

RECYCLING AND SECOND USE OF GREEN HYDROGEN FROM SEMICONDUCTOR INDUSTRY

<u>Martin Sagmeister</u>, Michael Richter, Markus Sartory, Patrick Pertl, Alexander Trattner

CentA

Funded by

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

CONFIDENTIAL

Content

- Hydrogen Production and Use in Semiconductor Industry
- Second Utilization Paths for Hydrogen
 - Technical Analysis
 - Emission Balance
- Implementation Project
- Conclusions

Hydrogen Production/Use

OMV

FFG

Klimaschutz, Umwelt, Energie, Mobilität,

H2PIONEER I ReHyB

H₂ Utilization Paths

Internal combustion engine (ICE) H2PIONEER 2 ReHyB

- Smallest number of components, wellestablished technology
- Gas mixture system to ensure >50% N₂ content (avoid backfiring)
- ICEs: e.g. agenitor406 from 2G Energy AG, 178 kW_{el}, η_{el,max}=39%, η_{tot}=81%

Infineon

→ 20% of electric energy for electrolysis; additionally, 14 MWh_{th} per t H₂

Stationary PEM fuel cell (FC) H2PIONEER X ReHyB

POSTBUS

(infineon

ENERGIE INSTITUT

OMV

HUCentA

- Gas purification needed (according to ISO14687)
- Compressor + cooler, Pressure Swing Adsorption (PSA) for purification (simulated loss of 26% H₂)
- FC: e.g. PowerCell MS-100 system, 260 kW_{el} ,η_{el,max}=62%, η_{tot}=94%
- → 11.5% of electric energy for electrolysis; additionally 10.9 MWh_{th} per t H₂

🗲 FFG

Slide 5

→ But: economically not viable

H₂ mobility

- Gas purification needed (according to ISO14687)
- Compressor + cooler, Pressure Swing Adsorption (PSA), additional compressor + cooler for refuelling at 350/700 bar
- H₂ busses: need ca. 7.5 kg_{H2}/100km (replacing ca. 30 l diesel)
- \rightarrow Ca. 13 300 km per t purified H₂

Internal recirculation

- Gas purification with PSA to 5.0 H₂
- Mixing with H₂ from electrolyser and cryogenic purification to 8.0 H₂
- → 74% of hydrogen can be re-used

→ But: inadequate resolution of online measurements to exclude accumulation of impurities → intolerable risk for epitaxy production process

POSTBUS

OMV

(infineon

Emission Balance

H2PIONEER 💐 ReHyB

Energy carrier	kg _{co2eq} /MWh
Green electricity	14 [1]
Natural gas	268 [1]
Diesel (incl. 5,6% bio fuel)	321 [1]
Hydrogen	174 [2]

[1] Umweltbundesamt, "Berechnung von Treibhausgas-Emissionen verschiedener Energieträger,"
https://secure.umweltbundesamt.at/co2mon/co2mon.html
[2] R. Derwent, P. Simmonds, S. O'Doherty, A. Manning, W. Collins und D. Stevenson, "Global environmental impacts of the hydrogen economy," IJNHPA, Bd. 1, Nr. 1, p. 57, 2006

Current process with grey H₂ delivered from Germany: 23.5 t CO_{2eq}/t_{H2}

(infineon

Implementation Project

(infineon

H2PIONEER 🔊 ReHyB

- 1st five H₂ busses will arrive in 2022
- Interim refueling station until completion of public HRS
- Up to 40 busses planned in and around Villach
- HRS additionally for heavyduty vehicles and FC cars

Conclusions

H2PIONEER 🔊 ReHyB

- Hydrogen ideal energy carrier for sector-coupling
- Replace wasteful emission of hydrogen with 2nd utilization
- All four investigated utilization paths technically possible and ecologically beneficial
- Purification and re-use for H₂ mobility chosen for implementation
- Quadruple emission mitigation:
 - − Grey hydrogen \rightarrow green hydrogen
 - Road transport \rightarrow local production
 - Emission of hydrogen-containing waste gas \rightarrow re-use of hydrogen

(infineon

− Diesel busses \rightarrow H₂ busses

Acknowledgments

Project Partners: Verbund, WIVA P&G, Infineon Technologies Austria, Energieinstitut at the JKU Linz, Linde Electronics, Postbus

Dr. Martin Sagmeister sagmeister@hycenta.at

HyCentA Research GmbH Inffeldgasse 15 A-8010 Graz

Funding Agencies:

H2Pioneer (FFG-Nr. 868807): Flagship Region Energy Program, KLIEN+FFG

ReHyB (FFG-Nr. 884312): Mobility of the Future Program, FFG

POSTBUS

(infineon

ENERGIE INSTITUT

OMV

HU CentA

Julian Trattner for his work on his master thesis

Thank you for your attention!

